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ABSTRACT 
 
 
 
 

In this research, the researcher presented pipelining of functional units in superscalar and DSP 

Processors, using  Verilog  hardware description language (VHDL).  The purpose of this 

Research was to increase the efficiency and computation performance of superscalar and DSP 

Processors making it cost effective due to the parallel execution of tasks. Previously work 

done regarding this has produced serial execution of instructions that used to take much more 

time in the execution of single instruction and after completion of that instruction, next 

instruction is to be executed, which simply produces time load in Superscalar and DSP 

processors. To resolve this matter much hardware (registers, adders, Multiplexers, decoder, 

encoders) was used. Although it improved computing performance yet it became costly and 

became out of range of pocket. Through this research, the researcher aimed to produce such 

an architecture that not only increases computation performance but also is cost effective as 

well. Parallel processing has been introduced through which we break the process into a series 

of steps. Each step transforms the previous step through refinement. The investigation was 

concluded with a summary of the researcher's conclusions, comments, and recommendations. 

 
Key Words: Pipelining, Superscalar, High Performance, DSP Processor, Execution 
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CHAPTER 1 

INTRODUCTION 
 
 

1.1 Background 

 
Pipelining is utilized to provide processing  time improvements and higher processor 

throughput  without  needing a significant  quantity of additional hardware that  is not 

feasible with current non-pipelined technologies. Like other types of architecture, 

computer architecture is the skill of identifying a user's demands and then creating a 

structure to best suit those goals while staying within a certain budget and set of available 

technologies. (Jeffrey Fred P. Brooks, 1962) 

 

Cache memory technology and various types of parallelism at the instruction level are only 

a few of the speedup strategies used by modern CPUs. Such parallelism may be found in 

the Data Processing Unit's (DPU) internal structure or in the overlap of tasks performed 

by the DPU and Program Control Unit (PCU). These characteristics increase the 

complexity of the CPU. The straightforward CPU makes clear the significant possibilities 

for parallel processing at the instruction level. The primary PCU and DPU tasks are carried 

out at various clock cycles. If they don't share a resource, like the system bus, then these 

tasks could be finished simultaneously. In other words, the PCU may fetch the next 

instruction while the DPU is handling the current command. This overlap of receiving and 

processing instructions is an illustration of command pipelining, a key component of RISC 

processor speedup. Fig. 1.1 provides a visual representation of the two-stage pipelining 

type. A fetch stage, which is primarily handled by the PCU, and an execution stage, which 

is primarily carried out by the DPU, can be thought of as two processing stages that each 

instruction goes through in succession. This allows for the processing of two instructions 

at once during each CPU clock cycle, with the first instruction finishing its fetch phase and 
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the second instruction finishing its execute phase. Therefore, two-stage pipelines may 

quadruple the CPU's performance by switching from one instruction every two clock 

cycles to one instruction per clock cycle. 
 
 

Instruction 11  

Fetch              Execute 
 
 
 
 
 

Instruction 12 
 
 
 
 
 

Instruction 13 (branch) 
 
 
 
 
 

Instruction 14 

Fetch Execute 
 
 
 
 
 
 
 

Fetch 

 
 
 
 
 
 
 
 
Execute 
 
 
 
 
 
 

Fetch               Execute 
 
 
 
 

Figure 1.1: Overlapping instruction in a two-stage instruction pipeline 
 
 

1.2. Problem Statement 

Pipelining is frequently equated to an assembly line in production, when many components 

of an item are put together simultaneously. Hence the present study is an intention to 

evaluate the impact of designing and testing high performance pipeline functional units by 

using Verilog hardware description language about superscalar and DSP processors and 

their usage in complex DSP algorithms. 
 
 

1.3.  Research Questions 

 
The following questions were addressed by the present study: 

 
 

RQ1. How to increase efficiency and .computational performance of superscalar and DSP 

Processors making it cost effective due to the parallel execution of tasks? 
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RQ2. How to determine the need of a user of structure and designing to meet those needs 
 

as effectively as possible? 
 
 

1.4. Research Objectives 
 
 

The following goals were considered when this study was being conducted: 
 
 

i. To increase efficiency and .computational performance of superscalar and DSP 

Processors making it cost effective due to the parallel execution of tasks. 

 

ii.      To  produce  such     an  architecture  that  not  only  increases  computational 

performance but also its cost effective to obtain improvements in processing time 

and boosting the CPU without adding a lot of additional gear. 

 

iii.      determine the need of a user of structure and designing to meet those needs as 
 

effectively as possible. 
 
 

1.5 Research Scope 

 
In  this  research  work,  the  researcher  has  just  worked on  Evaluating  the  Impact  of 

Designing and Testing High Performance Pipeline Functional Units by Using Verilog 

Hardware Description Language about Superscalar and DSP Processors and their Usage 

in Complex DSP Algorithms. We just discussed a simple e-learning system and its quality. 

In future more work can be done on it and this system can be developed. By developing 

this system performance can be improved in future. 
 
 

1.6. Research Significance 

The following are some reasons why the research will be useful: 
 
 

1. This would only be a meager contribution to the body of current knowledge. Due to the 

concurrent  execution of activities, this research will help  boost the productivity and 
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computing performance of superscalar and DSP processors, enabling them to be more 

cost-effective. 

 

2. It would be useful for this research to investigate how best to create a structure in order 
 

to satisfy a user's demands. 
 
 

1.7.  Thesis Organization 

 
This research thesis comprises of six chapters including this chapter. The summaryof the 

remaining chapters is provided as follows: 

 

        Chapter Two: Literature Review 
 
 

The second chapter is concerned with reviewing the literatures in order to gain knowledge 

about the existing research of Designing and Testing High Performance Pipeline 

Functional Units by Using Verilog Hardware Description Language about Superscalar and 

DSP Processors and their Usage in Complex DSP Algorithms. 

 

        Chapter Three: Research Methodology 
 
 

Third chapter describe the research methodology to achieve the objectives of the study. 

The research methodology encompasses the design of pipelining for Superscalar and DSP 

processors. Unlike other approaches, it attacks the processor design problem at a coarser 

level of granularity, at the execution unit level. This is a reasonable approach because large 

tasks are subdivided into smaller subtasks of equal time duration and it is possible to do 

all of them simultaneously. 

 

        Chapter Four: Results of Proposed Study 
 
 

This chapter discusses the outcomes achieved from the study conductedabout Designing 

and Testing High Performance Pipeline Functional Units by Using Verilog Hardware 

Description Language about Superscalar and DSP Processors and their Usage in Complex 
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DSP Algorithms. 
 
 

        Chapter Five: Model/Framework Evaluation 
 
 

This chapter presents the improved proposed model of Designing and Testing High 

Performance Pipeline Functional Units by Using Verilog Hardware Description 

Language about Superscalar and DSP Processors and their Usage in Complex DSP 

Algorithms. 

 

        Chapter Six: Conclusions and Future Work 
 
 

This chapter concludes the finding by achieving the objectives of the study. This also 

highlightedthe contributions and limitations of the study that is followed by the future 

directions in related field. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1. Definition of Pipeline 

 
A pipeline is a collection of phases, each of which requires some labor. The task is not 

complete until each step has been completed. The separation of a major work into smaller, 

overlapping tasks is the key of pipelining. Computers use the term "pipeline" to describe 

the constant, somewhat overlapping flow of instructions to the processors or the 

mathematical computations the CPU does to execute an instruction. A computer processor 

would have to read the first data from memory, execute it, then read the second instruction 

from memory, and so on, in the absence of a pipeline. The arithmetic part of the processor 

is not in use while the command is being retrieved. It must wait until it is given the next 

instruction. The pipelining capability of the computer architecture allows for the 

acquisition of the gets hard while the system is performing an arithmetic operation. The 

next instruction is held in a buffer near the CPU until each instructions operation is 

complete. Instruction fetching makes advantage of continuous staging. As a result, more 

instructions may be carried out in a given amount of time. 

 

While ultimately certain parts would need to be finished before others, pipelining is 

sometimes compared to an industrial assembly line where several components of a product 

are being built at once. Whether or whether there is a certain sequential reliance, the whole 

process may benefit from those operations that may operate concurrently. Pipelining is 

now essential to creating a fast processor. A pipeline is similar to an assembly line in that 

each stage completes a portion of the overall task in both. Installing seat coverings is one 

of the smaller activities carried out by workers on an automobile production line. The 

assembly line's strength stems from producing several automobiles each day. In the time 
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it takes to complete one of the several processes on a balanced assembly line, a new 

automobile comes off the line. The assembly line increases the number of vehicles being 

manufactured concurrently, which improves the pace at which the cars are started and 

finished but does not shorten the time it takes to build a single car. 

 

An instructional pipeline and an algebraic pipeline are two categories of computer 

processor pipelining. The phases that an instruction goes through while being processed, 

such as when it is retrieved, sometimes buffered, and then executed, are represented by the 

instruction pipeline. The arithmetic pipeline represents the parts of an arithmetic that may 

be divided up and overlapping while being carried out. In addition, pipelines and memory 

controllers  are  used  in  computers  to  transfer  data  among  different  memory staging 

locations. 

 

A pipeline processor is made up of a series of m data processing circuits, sometimes known 

as stages or segments, that work together to carry out an action on a stream of data 

operands. Each step includes some processing, but a complete result can only be reached 

once an operand set has gone through the full pipeline. A stage si in fig. 1.2 has a 

combinational data route circuit Ci and a multiword input register or latch Ri. The Ri's act 

as  buffers to  stop  nearby  stages  from interfering  with one another  and  keep  partly 

processed results as they pass through the pipeline. The Ri s undergoes synchronous state 

change in response to a shared clock signal. Except for R1, which obtains its data from an 

outside source, each Ri is fresh set of input data Di-1 from the stage Si-1 before it. The 

computations made by Ci-1 during the previous tick of the clock are represented by Di-1. 

After loading Di-1 into Ri, Ci uses Di-1 to calculate a new data set Di. As a result, each 

stage computes a fresh set of results for each clock period and transfers its prior results to 

the stage before it. 
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Control Unit 
 
 
 
 
 
 
 
 
 
 
 

R1                         C1                           R2                            C2                                                                              Rm                        Cm 
 
 

………….. 
 
 

Data in                                                                                                                                   Data out 
 
 
 
 
 
 

Stage S1                                        Stage S2                                    Stage Sm 
 
 

Figure 2.1: Structure of a pipeline processor 
 
 

A pipeline first seems to be an expensive and cumbersome method of carrying out the 

desired task. An m-stage pipeline's benefit is that it can handle up to m different sets of 

data operands at once. As a result of these data sets moving through the pipeline in stages, 

when it is full, m multiple processes are running simultaneously, each at a different step. 

Every clock cycle, a fresh final result comes out of the pipeline. 

 

The directive is broken down as follows: 
 
 

I: Fetch instruction (FI): Into a buffer, read the subsequent anticipated command. 
 
 

2. Decode Instruction (DI): To decode an instruction, you must first identify its opcodes 

and operand specifies. 

 

3. Calculate operands (CO): each source operand's specific address. It may be necessary 

to do calculations for address properties such as displacement, indirect, implicit, or others. 
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Fetch Instruction (FI) 
 
 
 
 
 
 

Decode Instruction (DI) 
 
 
 
 
 
 
 

Calculate Operands (CO) 
 
 
 
 
 

Fetch Operands (FO) 
 
 
 
 
 
 

Execute Instructions (EI) 
 
 
 
 
 
 

Write Operands (WO) 
 
 
 
 
 

Figure 2.2: Pipelined execution of a single instruction time 
 
 

4. Fetch Operands (FO): Retrieve each operand. No need to retrieve operands that are in 

registers. 

 

5. Execute Instruction (EI):  Execute the provided operation, and if necessary, store the 

result in the given destination operand location.. 

 

6. Write operand (WO): Save the result to memory. 
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With this split, the time of the different phases will be more evenly distributed. Every 

instruction passes through each of the pipeline's six steps. 

 

It won't always be this this. For instance, the WO stage is not required for a load command. 

Nevertheless, the timing is built up assuming that each instruction needs all six steps in 

order to simplify the pipeline hardware. It's specifically expected that there aren't any 

memory conflicts. For instance, a memory access is required at the FI, FO, and WO phases. 

The majority of memory architectures forbid these accesses from happening at the same 

time. 

 

Let's suppose for the sake of example that different phases will last about equal amounts 

of time. Nine instructions may be executed in only 14 time units instead of 54 time units 

using a six-stage pipeline. 

 

First, we need to figure out what occurs throughout each machine clock cycle. Every clock 

cycle activates every step of the pipe. This necessitates the ability for any combination of 

activities to happen simultaneously and the completion of all operations on a pipe stage in a 

single clock. The most crucial ones for the data route are listed below. 

 

1. The PC must be used for every clock. Instead of ID, this must be done. There must be an 

extra incrementer for this. The ALU cannot be utilized to increase the PC since it is already 

in use throughout every cycle. 

 

2. A fresh instruction is sent on each clock, as in IF. 
 
 

3. A fresh data word must be accessible on each clock cycle; MEM handles this. 
 
 

4. As both a data access and an instruction take place on every clock, there needs to be a 

distinct MAR for each (IMAR and DMAR). 
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2.2.  Concept of Superscalar Processors 

 
The word "superscalar," which was first used in 1987, describes a device built to increase 

the speed at which scalar instructions may be executed. The superscalar approach is the 

following advancement in the construction of sophisticated general-purpose processors. A 

CPU with many independent instruction streams is referred to as a superscalar processor. 

Each pipeline has many phases, allowing it to process several instructions at once. A 

further  degree of parallelism  is  introduced  by numerous  pipelines,  allowing  for  the 

simultaneous processing of many streams of instructions. Instruction-level parallelism, 

which specifies the degree to which instructions in a program may be executed 

simultaneously, is a technique used by superscalar processors. 

 

A superscalar processor often receives a high number of instructions all at once before 

looking for neighboring instructions that may be performed in parallel and are 

independently of one another. Since one instruction's input relies on another's output, the 

later instruction cannot finish its execution concurrently with or before the former 

instruction. The processor may begin and finish instructions in a different sequence than 

the machine code if such dependencies have been detected. 

 

By adding new registers and modifying register pointers in the original code, the processor 

may get rid of certain unnecessary dependencies. Common activities like loads, stores, 

conditional branching, and integers and floating-point arithmetic may be initiated 

simultaneously and completed individually in a superscalar implementation of the 

processing architecture. These implementations bring up a variety of intricate design 

concerns with regard to the instruction flow. 

 

The capacity to independently execute instructions in many pipelines is the core of the 

superscalar method. By enabling instructions to be executed in an order distinct from the 
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program  sequence,  the  notion  may  be  used  even  more  effectively.  The  superscalar 
 

technique is shown in broad terms in Figure 2.1. 
 
 
 

Integer Register File                                                  Floating- Point Register File 
 
 
 
 
 
 
 
 
 
 

Pipelined Functional Units       Memory      Pipelined Functional Units 
 
 

Figure 2.3: General Superscalar Organization 
 
 

There are several functional units that  enable the concurrent  execution of numerous 

instructions, each of which is implemented as a pipeline. This example allows for the 

simultaneous execution of two integers, two numbers, and a memory action (either load or 

store).There is some potential for performance increase using superscalar-like computers, 

according to the work of several researchers. 
 
 

2.3. High Performance Processor Components 

Putting it simply, completing a program more quickly. The period required to receive and 

execute an instruction is known as its latency. Your options are: I Reduce the latencies of 

individual instructions or ii) execute more instructions concurrently to  speed up the 

execution of a collection of instructions. 

 
While the latter distinguishes superscalar processor implementations, preventing rising 

instruction latencies due to an increase in hardware complexity brought on by the 

requirement for higher parallelism is a fundamental challenge in superscalar design. 

 
To process the instructions simultaneously, it is necessary to identify the relationships 

between them. It also needs adequate hardware, methods for figuring out if an operation 
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is ready to go, and methods for passing data from one action to another. The illusion of 

sequential execution must be preserved even after the outcomes of instructions have been 

committed  and  the  machine's  apparent  state  has  changed.  This  demonstrates that  a 

superscalar processor implements a variety of features, including: I strategies for snagging 

two or more tasks at once, frequently by anticipating the outcomes of provisional 

instructions and fetching beyond them; ii) techniques for identifying the true 

interconnections involving registers; and iii) processes for sending these values to the areas 

where they are required during execution. 

 
Resources for the simultaneous execution of multiple instructions in parallel, such as a 

number  of pipelined  functional units  and  memory structures  with  multiple  memory 

reference support, are also covered in Part II. 

 
iv) Techniques for sending data values through memory that make use of load and store 

instructions as well as memory interfaces that allow memory hierarchies to  perform 

dynamically and frequently in unexpected ways.The strategies utilized to carry out the 

instructions must be correctly matched with these interfaces. 

 

v) Methods for accurately recording the status of the process; these methods maintain the 

appearance of sequential execution to outsiders. 

 

Recent superscalar processors include: 
 
 

   MIPS R10000 
 
 

   DEC 21164 
 
 

    AMD K5 
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2.4. DSP Devices 

Applying mathematical procedures to signals that are represented digitally is known as 

digital signal processing. Any electrical system that converts digital signals into digital 

signals in accordance with an algorithm is a digital signal processing system. Digital 

signals often reflect physical system signals that relate to physical time. DSP systems, and 

real-time DSP systems in particular, are composed mostly of data-driven behavior that is 

repeatedly applied and is defined by a mathematical algorithm while being subject to 

severe temporal constraints. 

 

Timing and inaccuracy are the two primary criteria for DSP applications. DSP processors 

provide features to increase processing speed and accuracy (see 2.2.1 DSP Algorithms and 

System Applications). 

 

2.4.1 Speech coding 
 

1. Digital Cellular Telephones 
 
 

2. Personal Communication systems 
 
 

3. Digital Cordless Telephones 
 
 

4. Multimedia Computers 
 
 

5. Secure communications 
 
 

2.4.2 Speech Encryption and Decryption 
 

1. Digital Cellular 
 
 

2. Telephones 
 
 

3. Personal Communication systems 
 
 

4. Digital Cordless Telephones 
 
 

5. Secure Communications 
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2.4.3 Speech Recognition 
 

1. Advanced user interface 
 
 

2. Multimedia Workstations 
 
 

3. Robotics 
 
 

4. Automotive Applications 
 
 

5. Digital Cellular Telephones 
 
 

6. Personal Communication Systems 
 
 

7. Digital Cordless Telephones 
 
 

2.4.4 Speech Synthesis 
 

1. Multimedia PCs 
 
 

2. Advanced User Interfaces 
 
 

3. Robotics 
 
 

2.4.5 Image Compression 
 

1. Digital Photography 
 
 

2. Digital Video 
 
 

3. Video over Voice 
 
 

4. Consumer Video etc 
 
 

2.4.6 Advantages of DSP Processors 
 

        Functions implement able that are expensive or impractical in analog 
 
 

        Insensitivity to environment 
 
 

        Insensitivity to component tolerance 
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        Predictable, repeatable behavior 
 
 

        Reprogram ability 
 
 

        Size 
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CHAPTER 3 

RESEARCH METHODOLOGY 
 

3.1 Introduction 

The methods used for the research are detailed in this chapter. It provides a detailed 
 
explanation of the study's methodology and research strategy. 
 
 

   Proposed Research Methodology 

In this research study, the researcher proposed a methodology for the design of pipelining 

for Superscalar and DSP processors. Unlike other approaches, it attacks the processor 

design problem at a coarser level of granularity, at the execution unit level. This is a 

reasonable approach because large tasks are subdivided into smaller subtasks of equal time 

duration and it is possible to do all of them simultaneously. 

 

The purpose of this research is to increase the efficiency and computational performance 

of superscalar and DSP processors making it cost-effective due to the parallel execution 

of tasks. 

 

3.2.1 Architecture of Adders 
 
Many information processing tasks are carried out by digital computers. The different 

arithmetic operations are among the fundamental operations that are used. The addition of 

binary bits is unquestionably the most fundamental mathematical operation. 

The design of adders, such as the Bit Serial Adder, is covered in this section. 
 

Carry Look Ahead Adder, Pipelined Ripple Carry Adder, and Ripple Carry Adder. 
 
 

        Carry propagation with Look Ahead Adder. 
 

        Floating Point Adder with Pipeline. 
 

        Keep Save Adder on you. 
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3.3. Bit Serial Adder 

Cascaded  circuits with numerous  flip-flops  make comprise a sequential circuit.  The 

cognitive or information processing portion of the circuit is provided by the combinat ional 

1ogic. The inner data Y of the gadget is determined by the information that the flip-flops 

hold about the circuit's previous activity. Both X and Y are variables of Z if X and Y are 

the primary input and Z is the primary output. A precisely controlled clock signal often 

regulates the intervals at which flip-flops change states in a sequential circuit intervals at 

which switch change states in a linear chain are often regulated by a precisely controlled 

clock signal. State Y and primary output Z of the circuit have the capacity to vary with 

each clock tick. The behavior of a linear chain may be described using a state table that 

lists the potential principal output values and internal states. A bit serial adder in Fig. 4.1 

is created to add two unregistered binary values of any length, X1 and X2, in order to get 

their sum Z=X1 + X2. The numbers are given out in serial form, or bit by bit, and the 

outcome is likewise generated in serial form. The serial adder only has one flip-flop in its 

memory since it only has two internal states, and that flip-flop stores the value variable Y. 

There are only two strategies that may be used to allocate 0s and 1s to Y. Assigning the 

natural states, where So has Y=0 and S1 has Y=1, is what we do. The equation Y (i+1) = 

D may be used to explain the behavior of the flip-characteristic flop (i). The serial adder 

has to be reset to the S0 state before inputting the last two digits to be added. Giving the 

switch flop's clear (CLR) input a reset pulse is the simplest method to do this. 
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X[3] X[2] X[1] X[0]                            Z[3] Z[2] Z[1] Z[0] 
 
 
 
 
 
 
 
 

Y[3] Y[2] Y[1] Y[0] 
Ai                         Si 
 

1-bit Full 
Adder 

 
Bi               Cout 

 
Cin 

 
 
 
 
 
Serial in parallel out 
 
Shift Register 

 
 

parallel in 

Serial out 

Shift Register 

 
 
 
 
 
 
 
D-flip flop 

 
 
 
Q  D 

Clk 

Input x1   x2 
 

00        01       10        11 
 
Present S0(Y=0) S0,0     S0,1      S0,1    S1,0 
 
State    S1(Y=1)  S0,1    S1,0      S1,0   S1,1 

 
 
 
 

(a)                                                         (b) 
 
 

Figure 3.1: (a) Logic circuit for a bit serial adder; (b) State table 
 
 

Example: 
 
 

A = 0011, B = 0111 
 
 

A B Cin Cout Sum 
1 1 0 1 0 
1 1 1 1 1 
0 1 1 1 0 
0 0 1 0 1 

Each shift register is of four bits containing four d-flip flops. The data enters as parallel 
 

into the registers and shifts one position right at each clock cycle that is the output of one 

d-flip flop enters as input into the next d-flip flop. 

 

3.3.1 Advantages and disadvantages of serial adder 
 

Advantages 
 
 

        • The least costly hardware-cost circuit. 
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FA 
 

C  S 
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C  S 

   
  

 
 
 

FA 

  
 
 

FA 

  
 
 

FA 

  
 
 

FA 

  
 
 

FA 

 

C  S  C  S  C  S  C  S  C S 

 

        Requires only one full adder 
 

Disadvantages 
 
 

        Requires n clock cycles to compute the complete sum of two n-bit numbers. 
 

        This adder is slow but can work well if the clock speed is high. 
 

3.4. Ripple Carry Adder 

The simplest and shortest adders are ripple carry adders, but they are ineffective because 

the carrier must bounce from the smallest to the greatest bit. The easiest method is to 

combine two amounts. By using a simple array of full adders, carrying out one full adder 

is equivalent to bringing the next full adder. A "carry ripple adder" is a device that waves 

the transfer function from the least significant full adder to the highest relevant full adder. 

A[7] B[7]            A[6] B[6]            A[5] B[5]         A[4] B[4]         A[3] B[3]        A[2] B[2]     A[1] B[1]      A[0] B[0] 
 
 
 
 
 
 
 
 

FA 
 

C  S 
 
 
 
 

C7                                          C6                                       C5                                          C4                                        C3                                   C2                                         C1                                      C0 
 

Sum[7]               Sum[6]        Sum[5]                Sum[4]            Sum[3]     Sum[2]       Sum[1] Sum[0] 
 
 
 

Figure 3.2: Ripple Carry Adder 
 

The speed of this ripple carry adder is: 
 
 

rCPAcr = (n-1) Tcarry + Tsum 
 
 

where the carry and total speeds of a complete adder are Tcarry and Tsum, respectively. 

Keep in mind that this adder's speed increases linearly with word length. It is thus of order 

O. (N). 
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A simple illustration of an 8-bit ripple carry adder is shown in the figure above. The two 

binary discords A and B are being added and stored in Sum. This design has a fairly 

straightforward look and structure. The ripple results from connecting the carry in from 

one adder to the carry out from the next adder. 
 
 

3.5. Advantages and Disadvantages of Ripple Carry Adder 

Advantages 
 
 

        • Adds all the bits of two n-bit values in one clock cycle. 
 

        This adder is fast. 
 

Disadvantages 
 
 

• N-full adders are necessary for an n-bit ripple carry adder. 
 

• The ripple carry adder's hardware requirements grow linearly as n rises. 
 

• The input carry value determines the value of each bit in the total output. 
 
 
 

• Ca must wait for Ca in a 4-bit adder. Ca must hold off till Ca, and so forth. 
 

• Carry signal ripples over all n stages of the adder in the worst case scenario. 
 

• The latency in carry propagation is significant. 
 
 

3.6. Pipelined Ripple Carry Adder 

 
The architecture of a pipelined ripple-carrier adder for carrying out a series of N adds is 

depicted in Figure 3.3 below. When combining two integer vectors with N components, 

add sequences of this kind. If T is the pipeline's clock period, then computing the single 

sum x, #y requires 4T of processing time, or 4T of pipeline delay. This number is the sum 

of the delayed duc to the buffer registers and the time needed to do one addition on a 

nonpipelined processor. A new total appears after the data has been added to each of the 

pipeline's four steps. As a result, N consecutive additions are possible. 
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A3         B3 

 
A2      B2 

 
A1       B1 

 
A0      B0 

 
 
 
 
 
 
 

1-bit full             R 1-bit full             R 
adder adder                                      1-bit full            R 

adder 
1-bit full 

adder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S3                                                         S2                                                S1                                               S0 
 
 

Figure 3.3: Design of Pipelined Ripple Carry Adder 
 
 

3.7. Carry Look Ahead Adder 

It follows that each of the bits of a bone expansion and addends are accessible for 

calculation at once when two binary integers are multiplied in parallel. The signal must 

pass through the gates, just as in any multiplexing, for the output terminals to show the 

correct output total. By dividing the number of gate levels in the circuit by the usual gate's 

propagation delay, the total propagation time can be calculated. With a parallel adder, the 

carry propagation over all adders takes the longest. As each bit of the overall output 

depends on the value that the input carry provides, the value of S at each given stage in the 



33 

 

Evaluating the Impact of Designing and Testing of High Performance Pipeline Functional Units by Using Verilog 
Hardware Description Language about Superscalar and DSP Processors and their Usage in Complex DSP 
Algorithms 

 

 
 

 
 

 
  

 

 
 

 
 

instrumentation amplifier did not reach its steady-state state final value until that step's 

intake carry was supplied. 

 

The speed  at  which two  numbers are added concurrently is controlled  by the carry 

propagation time. Even though there will always be some at the output terminals of 

combinational circuits, including parallel adders, the output won't be precise until the 

signals have had enough time to travel through the gates connecting the inputs to the 

outputs.The time spent adding is very important since all other mathematical operations 

are handled via a series of adds. Using 1aster gates with shorter delays is a clear way to 

lower the carry propagating delay time. Yet, the capabilities of physical circuits have a 

limit. Another option is to make the equipment more sophisticated in order to decrease 

carry delay time. With a parallel adder, the carry propagation time may be decreased using 

a variety of methods. The most common method, which is explained here, uses the look- 

 
ahead-carry concept. 

 
 

Ai 
Pi                                                                                                 Si 

 
 
 
 
 

Gi 
Ci+1 

 
 

Ci 
 

Figure 3.4: Full adder circuit 
 

Think about the whole adder circuit seen in fig. 4.3. If we introduce two additional 
 

binary variables: 
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Pi = Ai + Bi 
 

Ai + Bi + Gi 
 

Si = Pi + Ci is a formula for expressing the output sum and carry. 

Gi + Pi = Ci+1 Ci 

When both Ai and Bi are one, independent of the input carry, Gi is referred to be a carry 

generator and it generates an output carry. Due to its association with the carry's 

propagation from Ci to Ci+1, Pi is also known as the carry propagate. The carry output for 

each stage is now expressed as a Boolean function, and for each Ci, the value from the 

prior equations is substituted: 

C4 = G3 +P3 C3 =G3 +P3G2 +P3P2G1 +P3P2P1C1 C2 = G1 + P1C1 C3 =G2 + P1C1 

G1 + P1C1 = G2 + P2G1 + P2 P1 C1 

The term "produced" describes how stage I results in a carry of 1 (Ci = 1) regardless of the 

amount of Ci-1 if both Ai and Bi are 1, or if AiBi =1. If I propagates Ci-1, leading Ci to 

equal 1 in response to Ci-1 equaling 1, then Ci will equal 1 if either Ai or Bi equals 

1. 
 

Each function may be implemented using a single level of AND gates followed by an OR 

gate or a two level NAND since the Boolean function for each output carry is 

represented in sums of products. 

Carry look-ahead adder is used over the much more simple ripple adder. The key is 

speed. Carry look ahead avoids the large propagation delays that are generated in the 

ripple scheme. 
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Cn-1         Pn-1         Gn-1           P 
 

Zn-1 

 
n-2         Gn-2 

 
P0            G0 

 
Z0 

 
 

1-bit 
full 

adder 

 
 
 
Cn-2 

1-bit 
full 

adder 

 
 
 
Cn-3 

1-bit 
full 

adder 

 
 
 
Cin 

 
 

 
An-1      Bn-1                An-2     Bn-2                                                                        A0        B0 

 
 

Figure 3.5: Overall structure of carry look ahead adder 
 

Fig. 3.5 shows the general form of a carry look ahead adder circuit. The sum equation for 

the stage i       Zi = Ai + Bi  + Ci-1 

is equivalent to      Zi = Pi + Gi + Ci-1 
 
Following plumbing diagram is a good way of thinking about the differences between 

ripple and carry look-ahead. The top pipe is the ripple adder's path. Each lever along the 

bottom represents each adder in the sequence. One step in the sequence requires the 

previous steps to finish. For a long pipe (large adder) this delay would be immense. The 

bottom pipe flows a more independently (each if the feed-ins represents the logical 

determination of carrying in the carry look-ahead scheme). 

 
 

Figure 3.6: Plumbing diagram showing the difference between ripple carry and carry 
 

look-ahead address. 
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 4-bit Carry Look Ahead Generator 
P3    g3                                      P2    g2                                 P1    g1                                P0    g0  

 

 
 
 
 
 
 

Cin 
 
 
 

p        g                      p        g                       p        g                         p        g 
 
Z15: Z12                                    Z11: Z8                                     Z7: Z4                                        Z3: Z0 

 
 
 

4-bit 
adder 

 
4-bit 
adder 

 
4-bit 
adder 

 
4-bit 
adder 

Cin 

 
 

x15 : x12  y15 : y12                        x11 : x8  y11 : y8                      x7 : x4  y7 : y4                     X3 : x0  y3 : y0 
 
 
 

Figure 3.7: 4-bit adders connected by carry look-ahead form a 16-bit adder. 
 
This design is an example of a 16-bit carry look adder, which is fast, expensive, and 

unusable owing to the complexity of its carry-generation logic. Each adder stage outputs a 

propagate-generate sign rather than C out after a carry-look-ahead generator converts the 

four sets of propagate-generate signals into the carry required by the four stages. 

 

3.7.1   Advantages of Carry Look Ahead over Ripple Carry Adder 
 

        Fast addition speed over ripple carry adder. 
 

        Very few carry ripples. 
 

        But incorporates high area. 
 

        Cost and complexity is too much as compared to ripple carry adder. 
 

        Exponential rise in the area of look ahead adder with increasing number of bits. 
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3.8. Pipelined Floating Point Adder 

 
Before the matching mantissa can be added or removed in floating point addition, the exponents of 

the two input operands must be identical. Exponent equalization may be achieved by right-shifting 

the mantissa linked to the lower exponent to create a new mantissa, which can then be merged 

directly. There are three basic phases in floating point addition: 

 

o Do a fixed-point subtraction of YE- XE. 
 

• To derive the formula XM 2 X E - Y E, move XM YE-XE positions to 

the right. 

        For XM 2 X E - Y E YM, 
 

        do a fixed-point subtraction or addition. 
 

Two normal flying values, x and y, may be added using the following four steps: check the 

exponent, align the mantissa (equalize the algebraic expressions), add the mantissa, and 

standardize the results. 
 

X=(XM. XE) 
 
 

R1 
 
Y=(YM. YE) 

 
 
Expon 

ent 
Adder 

C1 

 
 

Mantis 
R2                     sa 

shifter 
C2 

 
 

Mantis 
R3                   sa 

adder 
C3 

 
 

Exponent 

R3               
adder 

mantissa 
C4 

 
 
 
 
Z=(ZM.ZE) 

 

 
 
 
 
 

Stage S, 
(Exponent comparison) 

Stage S, 
(Mantissa alignment) 

Stage S, 
(Mantissa addition) 

Stage S, 
(Normalization) 

 

Figure 3.8: Four stage floating-point adder pipeline 
 

The four-stage pipeline processors that is shown in the accompanying fig. 4.5 is necessary for these 

activities. 
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Assume that x has the standardised precision floating-point form (XM, XE), where XE is 

the exponents with respect to a certain base B = 2K and XM is the mantissa. 

At stage Si of the pipeline, X = (XM, XE) is added to Y = (YM, YE), which compares XE 

and YE, as the first step. The exponents are subtracted in this comparison, which 

necessitates the use of a fixed-point adder. At the second stage of the pipeline, S2, Si 

detects the smaller exponent, let's call it XE, whose mantissa XM may be altered by 

shifting to produce a new mantissa XM and YM that are now perfectly aligned, and is then 

added. 

A fourth and final step is required to normalize the result since this fixed-point addition 

may result in an unnormalized result. 
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Figure 3.9: Pipelined version of floating point adder 
 

Finding an appropriate multistage sequential method to calculate the specified function is the 

first step in designing a pipelined circuit for that function. The pipeline stages that implement 

this algorithm's phases should be balanced in that they should all take about the same amount of 

time to complete. Rapid buffering registers are used to separate the stages so that pertinent data 

(full or incomplete results) may be transferred from one without affecting the other. The buffer 

are designed to operate at the highest clock rate feasible to provide reliable data transmission 

between stages. 
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A fly adder pipe with a registered architecture based on unnecessary delay design is shown 

in Fig. 3.9. The usage of buffer values to define and differentiate the four phases is the 

fundamental departure from the nonpipelined situation. The implementation of repaired 

and flying addition has undergone another modification. The input operands are only sent 

to step S, which then conducts a fixed-point addition; the other three steps are bypassed. 

The circuit in Figure 3.9 is an example of a multifunctional pipeline that can be set up as 

either a multiple hanging adder or a one-stage fixed-point adder. Moreover, this circuit is 

capable of floating-point subtraction. 

The following describes how this floating-point adder unit works. Whereas registers E1 

and E2 have the exponent of the input operands, registers M1 and M2 store the 

corresponding mantissas. The result is used to choose the mantissa that shifter I will right 

shift to and to calculate the duration of the shift. Adder 1 then subtracts E2 from E1 to get 

to E2. For instance, M2 is right shifted by k digit places, or 4k bit positions, if E1 is bigger 

than E2 and E1 - E2 = k. The other is among and the shifted mantissa are then added to or 

subtracted from one another using adder 2, a 56-bit concurrent adder with a few carry look- 

ahead levels. The resultant sum or difference is then checked by the zero -digit checker, a 

specialized combinational circuitwhich is placed in a temporary register R. The amount of 

leading zero digits—or leading ones, in the case of negative numbers—that make up the 

number in R is shown on the circuit's output z. The last normalization step is then managed 

by the value of z. Using shifter 2, data from R is left-shifted by z digits before being placed 

into register M3. The necessary adjustment to the exponent is made by deleting Z using 

adder 
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Figure 3.10: Pipelined Adder with Feed Back Path 
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Figure 3.11: Summation of an eight-element vector 
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Figure 3.12: (continued) 
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In certain cases, introducing reward systems from the stage result to the pipeline's primary 

inputs might boost the effectiveness of the processor.Feedback allows the pipeline to 

utilize the calculations made by certain stages as input for further computations. 

The N-number summation issue is resolved in the following manner by the pipeline of Fig. 
 
3.11. With input x, the external operands bl, b2, b3, b4,... b8 are streamed continuously 

into the pipeline. If the operands are kept in adjacent register/memory locations, it is simple 

to implement the required series of fetch operations for this procedure. The pipeline input 

K is given the all-0 word designating the floating-point number zero while the first four 

values bl, b2, b3, and b4 are being entered, as shown in fig. 3.11 for times t=1:4. The initial 

sum 0 + bl = b1 emerges from S4 at time t=5, or four clock cycles later, and is fed back 

into the Pipeline's main inputs. At this stage, the outcome S4 = b1 replaces the constant 

input K = 0. Now, the pipeline starts to calculate bl + b5. The calculation of b2 + b6 starts 

at time t=6, b3 + b7 computation starts at time t=7, and so on. At time t = 8, when bl + b5 

exits the pipeline, it is sent back to Si to be added to the most recent incoming number. 

The total b2 + b6 emerges from the pipeline in the following time period. 
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t=13                                  t=14                               t=15                                 t=16 
 
 
 
 
 
 

Figure 3.13: Summation of an eight-element vector (continued) 
 

The output structure is once again changed once the last input component, b8, has entered 

the pipeline so that the four incomplete sums may be summed to get the intended effect, 

bl+b2+b3+.....b8. The first of the four partial sums at the output of step S4 is placed in 

register R at time 9, and the external inputs to the pipeline are disabled by setting them to 

zero. At time 10, the newly acquired result from Sa is returned to the pipeline inputs 

together with the prior result—b2 + b6—obtained from the register R. At this point, the 

total of the input operands, bl + b5 + b2 + b6, is computed. The second half total—b3 + 

b7 + b4 + b8—is computed after a further one-time delay. At time t = 14, bl + b5 + b2 + 

b6 emerges from Sa. It is kept in r until time t = 16, when b4 + b8 + b3 + b7 emerges from 

S. The outputs from Sa and R are now sent back to S1. In the instance of N=8, the final 

result is achieved at t=20, four time periods later. 



45 

 

Evaluating the Impact of Designing and Testing of High Performance Pipeline Functional Units by Using Verilog 
Hardware Description Language about Superscalar and DSP Processors and their Usage in Complex DSP 
Algorithms 

 

It is obvious that the design of fig. 3.11, where T is the clock period of the pipeline or the 

delay per step, can calculate the sum of N>4 floating point integers in time (N + 11)T for 

the general case of N operands. We get a speedup of around 4N/(N+11) here, which 

becomes closer to 4 as N rises, compared to an equivalent nonpipelined adder, which needs 

time 4NT to calculate the total. 
 
 

3.9 Carry Save Adder 

Carry save addition is a method often used by multipliers that is especially well suited for 

pipelining. N discontinuous complete adders make up an n-bit carry-save adder. Three n- 

bit values to be added are its input, and its output is made up of the n sum bits, which make 

up the word S, and the n carry bits, which make up the word C. There is no carry 

propagation inside the individual adders, unlike the adders. The outputs S and C may be 

used to add to a third n-bit number W by feeding them into another n-bit carry save adder. 

To match to standard carry propagation, the carry connections are moved to the left. In 

general, a tree-like network of carry-save adders may add m integers to generate a result 

of the form (S, C). A traditional adder with carry propagation must add S and C to get the 

final amount. 
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+                  +                 +                 + 

 
X         Y          Z 
 
 

CS adder 
 
 
 

W3                                  W2                                 W1                             W0 

 
+                  +                 +                 + 

 
W         C          S 
 

CS adder 
 
 
 
 

S’3 
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S’0 C’      S’ 
 
 
 

Figure 3.14: A two-stage Cary Save Adder 
 
 

Example: 1               0 
W                0               1 
X                1               0 
Y 

 
 
1              1 
0              1 
1              0 

Stage I 
Z                 0               0               0               1 

 
 

SUm                      0             0 
Carry     1            1             1 

Z                         0             0 

1               0 
1 
0               1          Stage II 

 
 

Sum 
Carry 

1              0               0               1 
1              1               0 
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CHAPTER 4 

ARCHITECTURE OF MULTIPLIERS 
 

This section deals with the different types of multipliers: 
 
 

        Carry-Save (Wallace Tree) 
 
 

        Pipelined Carry Save (Wallace Tree) 
 
 

        Booth's 
 
 

      Dadda 
 

The Wallace tree, named after its inventor Wallace [Wallace 1964], is a multiple stage 

carry-save adder circuit that can do multiplication. The adder tree's inputs consist of n 

terms with the formula Mi = xi Y 2k. Mi is represented as a Y-value in this instance and 

is equal to Y times the ith multiplier bit, weighted by the appropriate power of 2, and. 

Imagine the scenario when a complete double-length product is needed and Mi is 2n bits 

long. The sum of M, where is a value between 0 and n-1, is the required product. The 

carry-save adder tree, which generates a 2n-bit and 2n-bit carry word, is used to get this 

total. The final carry assimilation is carried out by a fast adder using regular internal carry 

propagation. 

 

For moderate values of n, the solely combinational multiplier of fig. 4.1 is practical, 

depending on the level of circuit integration used. For huge n, a large number of carry- 

save adders may be required. Carry-save techniques may still be employed, even if the 

multiplier is partitioned into k m-bit portions.The carry saving adder circuit generates and 

adds just m terms, Mi. The procedure is carried out k times, and the totals that result are 

then added together. As a result, k iterations are required to produce the product. 
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adder 
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Figure 4.1: A carry-save (Wallace tree) multiplier 
 
 

4.2 Pipelined Carry Save Multiplier 

For pipelined implementation carry-save multiplication is well-suited figure 4.2 shows the 

pipelined multiplier. The first stage decodes the multiplier and feeds the carry-save adders 

with properly shifted copies of the multiplicand. 
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Output bus 

Carry look ahead 
adder 
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Figure 4.2: A pipelined carry save multiplier 
 
 

The first step produces a collection of numbers (partial products), which are then added 

together by the carry save adder tree. By adding buffer registers, shown in the diagram as 

R, the carry saves logic has been split into two steps. A carry look-ahead adder is included 

in the fourth and final step to incorporate the carries. It is simple to adapt this sort of 

multiplier to work with floating point numbers. A fixed-point multiplier pipeline 
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handles the input mantissa's processing. A separate fixed-point adder is used to combine 

the exponents, and a leveling circuit is also included Booth's Multiplier. 

 

In the 1950s, Andrew D. Booth devised the two's complement multiplication system that 

is now in use. While doing a multiplication, the multiplier X is scanned from right to left 

to identify which action to carry out: adding the multiplicand Y, subtracting Y, or adding 

zero, or performing no operation. In Booth's method, each step involves looking at two 

neighboring bits, Xi Xi-1. If Xi Xi-1-= 01, Y is added to the current partial product Pi, and 

if Xi Xi-1-= 10 or 11, Y is removed from Pi. If Xi Xi-1-= 00 or 11, no addition nor 

subtraction is done; instead, Pi is simply shifted to the right thereafter. Hence, when 

Booth's algorithm sees runs of 1s and runs of 0s in X, it basically ignores them. This 

shifting lowers the approximate rating of add-subtract steps and enables the construction 

of faster multipliers, but at the cost of more intricate timing and control circuitry.. 
 
 

Step Action Accumulartor A Register Q 

0 
 

1 
 

2 
 

3 
 
 

4 
 

5 
 
 
 

6 
 

7 
 
 

8 

Initialize registers 
Set Q |-1| to 0 

 
Subtract M from A 

Right shift A.Q 
Skip add/subtract 
Right-shift A.Q 

 
Add M to A 

Right-shift A.Q 
Skip add/subtract 
Right-shhift A.Q 

 
Subtract M from A 

Right shift A.Q 
Skip add/subtract 
Right shift A.Q 

 
Add M to A 

Right-shift A.Q 
 

Subtract M from A 
Set Q[0] to 0 

000000000 
000000000 
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00101011 
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10110011 = Multiplier 
101100110 
= multiplicand Y = M 
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111011001 
111101100 
111110110 
111110110 
011111011 
011111011 
101111101 

 
101111101 
110111110 

 
110111110 
110111100 = Product P 

 

 
Figure 4.3: 1llustration of the Booth Multiplication algorithm 
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 B      
 

A multifunction cell with the ability to do addition, subtraction, and no operation skip is 

necessary for a booth multiplier. Figure 4.4a depicts a cell of this kind. A set of control 

lines H and D are used to choose from among its different functionalities. The following 

logical equations clearly show that the necessary function of B is defined by them. 

 

A=B H CH in Z 
 
 

(A A D) (B + C) (BC) Cout 
 
 

These equations decrease to complete adder equations for HD = 10 and to full subtractor 

equations for HD = 11, respectively. 

 

Z = A B C 
 
 

A'B + A'C + BC = Cout 
 

A             B 
 

H 

D 
 
Cout                                                                                C 

 
B 

 
Z 

 

Fig 4.4 Main cell B                            (a) 
0               0               0              0               0              0             0 

y3                     y 
 

B 

y3                    y3                      y 
 

B               B 
 

 
 B       

B 
0 

 
0 

y1                   y0 
 

B                    C               0 
0                             x0 

B                                    C 
0                                                 x1 

C 
x2 

C 
x0 

P6                      P5                     P4                    P3                    P2                   P1                  P0 
 

(b) 
 
 

Figure 4.4: (continued) Combinatorial array that implements the Booth method 
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(b) An array multiplier for a 4*4-bit value, where C and Cout, respectively, serve as the 

borrow-in and borrow-out functions. When H = 0, Z turns into A, and the carry lines 

have no effect on the result. 

 

Fig. 4.4 illustrates the connection of n2 + n (n-1)/ 2 copies of the B cell to create an n-bit 

multiplier (a). During addition and subtraction, the additional cells on the upper left are 

used to sign-extend the multiplicand Y. Every row of B cells receives the sign-extended Y 

straight from the diagonal lines designated B. Leading 0s are used to prolong the sign of 

Y when it is positive; whereas, leading 1s are required to extend the sign of Y when it is 

negative. 

 

Bits Xi Xi-1 of the operand X determine which operation will be carried out by each row 

I of the B cells. The second cell type designated in fig. 4.4(b) produces the control input 

signal H and D needed by the B cells, allowing each potential x; Xi-I pair to control row 

operations. Cell C performs an x-to-x comparison and produces the value of HD needed 

by Figure 4.4(a): these values are                H = Xi Xi-1. 
 
 

4.3 Dadda Multiplier 

A 12*12 Dadda tree reduction strategy is shown in Fig. 4.5. Similar to a Wallace tree, it 

takes 5 layers of complete adders to decrease 12 partial products to 2. It has the same 

decrease rate as a Wallace tree. The Dadda tree's sole advantage is that it has the ideal 

amount of computational components, or full adders and half adders. Smaller size and less 

power dissipation are the primary results of this. To decrease the 12 partial products to two 

using the Wallace tree multiplier, 102 full adders and 34 half adders are needed. Just 100 

full adders and 14 half adders are required to complete the same reduction in the Dadda 

tree. Even if there are not many complete adders, there is a significant reduction in the 

number of half adders. 
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Figure 4.5: 12 * 12 Dadda Tree Multiplier 

 
 

Use the following numerical series to comprehend how the savings are achieved: This list 

simply explains the 3 to 2 reduction method backward, with each number denoting the 
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amount of partial products still present at each level of addition: 2, 3, 4, 6, 9, 13, 19, 28, 
 

42, 63, etc. Two partial products may be decreased to a maximum of three partial products, 

three to a maximum of four, four to a maximum of six, and so on. This suggests that it is 

not necessary to reduce an array to parlay products since 5 partial products are equal to 6 

in terms of the remaining number of reduction levels. Hence, one would decrease the 12 

partial products in the example above to 9 partial products rather than 8 partial products as 

in the Wallace method. In addition, no reduction is made if a row has 9 or fewer incomplete 

items. The Walla, of which just two remain. The Dadda technique attempts to eliminate 

all partial products except computational components, resulting in an optimum reduced 

number of Wallace implementations. 

 

As previously noted, the Wallace tree and the Dadda tree both have the same rate of partial 

product decrease. It comes from: 

 
Bj + 3 [(bj) /2] + Bj mod 2 

 
 

Where bj is the quantity of incomplete products at the jth adder level still remaining. The 

number of adders levels b for big n is roughly given by: b= log3/2 (n/2) 

 

The quantity of free product pieces is different from a Wallace tree, however. One can 

observe from fig. 4.5 that there is just one free product bit obtained: f=1 
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CHAPTER 5 

ARCHITECTURE OF SUBTRACTERS DESIGN OF 
SUBTRACTERS USING 2'S COMPLEMENT 

 
5.1 Introduction to 2's complement 

 
In digital computers, complements are employed to make logical operations and the 

subtraction operation simpler. Every base-r system has one of two complement kinds. 

When the base value is changed, the two types are referred to as 2's complement and 1's 

complement for binary numbers. The l's complement of a binary number and the 2's 

complement of a binary number are important because they enable the representation of 

negative integers.Computers often handle negative integers using the 2's complement 

arithmetic approach. 

 

5.1.1   Finding the 2's complement of a Binary Number 
 

There are two ways to use the 2's complement: (1) Adding I to the 1's complement's least 

significant digit. 

 

Example 5.1 
 
 

Binary number 01001101 is the solution to 10110010's 2's complement. l's complement 1 

plus 1 equals... 010011 (2) By converting all 1s into 0s and all 0s into ls after leaving all 

leading 0s in the least important position and the initial 1 alone. 

 

Example5.2 
 
 

Solution 10111000 for 2's complement of 10111000 the binary value 01001000 

complement of 2 

 

They remain the same. 
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5.1.2   Subtraction with 2's complement 
 

These are several methods for subtracting two positive integers, both with base 2: 
 
 

1. To the subtrahend's complement of two, add the minuend. 
 
 

2 Examine the first-step outcome for an end carry. If an end carry happens, throw it away; 

if not, take the 2's complement of the number you got in step 1 and put a negative sign in 

front of it. 

 

Example 
 
 

Perform M-N using 2's complement with the given binary number 
 
 

M =1010100 
 
 

N = 1000100 
 
 

2's complement of N = 0111100 
 
 

1010100 
 
 

1000100 
 
 

End carry 1/ 0010000 
 
 

Result:    10000 
 
 

Signed Numbers 
 
 

Both sign and magnitude information may be found in a signed binary integer. The 

magnitude represents the value of the number, and the sign shows whether it is positive or 

negative. Signed integer numbers may be represented in binary form in three different 

ways: sign-magnitude complement, ,'s and 2's complement. In a signed binary number, the 

sign bit is the leftmost bit. An O denotes something good, and a l something bad. 
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5.1.3   Signed Numbers in the system of two complements 
 

The following symbols are used to represent positive integers in the 2's complement 

system: An 8-bit signed binary integer is used to represent the decimal value +25. 

 

Number bit 00011001 for the sign 
 
 

Quantity bits 
 
 

In the 2's complement system, a negative number is the 2's complement of a positive 

integer. A decimal number having a value of -25 may be represented as the 2's complement 

of +25 (00011001), or 11100111. 

 

The twos-complement  algorithm makes subtracting  very straightforward  due to  how 

simple it is to implement negation (changing X to -X). 

 

If X = Xn-1 Xn-2 Xn-3, then Xo is an integer with two's complement; negation is 

accomplished by 

 

- X = Xn-1, Xn-2, Xn-3, etc., where + stands for addition modulo 2n. How to get the ones- 

complement part X Xn-1 X Xn-2 Xn-3 effectively? The word-based EXCLUSIVE OR 

function X s with a control variable s is used in X0 of -X. X s=X when s = 0, but X s=X 

when s = 1. Let's say that an n-bit adder now has Y and X applied to its inputs. 
 
 
 
 

Z = Y ± X
 

Carry out                                                                                      Carry in 
 

Cn-1                               n-bit parallel adder              Cin 
 

n 
 
 
 
 
 

n                               n 
Subtract s 

Y                              X 
Figure 5.1: An n-bit twos-complement adder-subtracter 
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Applying s to the carry input line of the adder will make it possible to achieve the addition 

of I necessary to convert X to -X. The control line chooses the addition operation Y + X 

in the circuit shown in Fig. 5.5 when s = 0 and the subtraction operation Y - X= Y + X + 

1 when s = 1. Hence, to execute twos-complement subtraction, the adder's input must be 

connected to n two-input EXCLUSIVE-OR gates; these gates are represented by a single 

n-bit word gate in fig.5.1. 

 

Numbers that are unsigned or have a sign-magnitude do not lend themselves to subtraction 

as easily. The complete (1-bit) subtracter function zi = yi-xi-bi-1 may be used to build a 

subtracter for such integers on occasion. The following logical equations characterize this 

operation: zi = xi yi bi-1 

 

bi=xi yi plus xi bi-1 plus yi bi-1 
 
 

Thus, bi-1 and bi serve as the borrow-in and borrow-out bits, respectively, with zi serving 

as the difference bit. The construction of n-bit serial or parallel binary subtracters is 

substantially the same as that of comparable adders, with borrow signals used in lieu of 

carry signals. 
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CHAPTER 6 

ARCHITECTURE OF DIVIDERS 
 
 

6.1 Introduction to division 

Two numbers—a dividend, D, and a divisor, V—are provided in fixed-point division. The 

goal is to determine the third integer, or division, Q, so that Q* V equals or approaches D. 

For example, the computation of Q is done in a way that, if integer variable formats are 

utilized, 

D=Q*V+R 
 
 

Where R, the remaining amount, must be less than V, i.e., 0=RV. We can write 
 
 

D/V = Q + R/V 
 

Thus, R/V is a tiny amount that represents the mistake in substituting Q for D/V; if R = 0, 

this error is equal to zero. Given that the dividend, quotient, and divisor are equivalent to 

the product, approximately 5 percent, and multiplier, respectively, the equation D = Q * V 

shows that there is a tight link between division and multiplication. This link allows for 

the employment of similar techniques and circuits to execute multiplication and division. 

When multiplying two numbers, the shifted multiplier is added to the multiplicand to get 

the result. The dividend is deducted from the shifting divisor to get the quotient in division. 

Division often starts with a double-length dividend, much to how multiplication concludes 

with the double-length product. Despite these similarities, division is a more difficult 

operation than multiplication since it requires knowledge of the number of multiples the 

current partial payment D1's divisor V is in order to determine a specific quotient bit q. 

Often, the answer to this issue requires experimentation.  Subtract the result from D, 

multiply V by a test value for q1, and then determine the value of the leftover fraction. It 

is impossible to identify the next quotient bit, q1+1, unless q is unknown. Uncertainty is 
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present in this division that is absent with multiplication. The quotient is calculated bit by 

bit once the dividend has been scanned from left to right. The partial dividend D, also 

known as partial remainder, is compared to the divisor V in each step. It is possible to tell 

whether the current quotient is bit 0 or bit 1 by comparing V with the current partial 

remainder. This comparison is the challenging part of decimalimal division and is more 

difficult than binary in this way because q must be chosen from a pool of ten possible 

values rather than two. D will not fit in the usual word size if V is too small compared to 

D, leading to quotient overflow. When V is zero, it is said that a divide by zero error has 

happened and that the quotient Q is undefined or infinite. Special circuits are employed to 

search for and indicate quotient under, flow, and zero prime factors before division begins. 
 
 

6.2 Division Algorithm 

 
Suppose that the divisor V and dividend D are both unsigned numbers, and that the 

quotient Q=qn-1 9n-2 qn-3...... must be computed one bit at a time. At step I of each 

iteration, the current partial residual R1 is matched to 2"V, which indicates the divisor 

shifted I bits to the right. The quotient bit q is set to 1 (0) and a new partial residual R1+1 

is generated using the formula: 

 

R1+1 = R1 - q1 211 V if 2'V is less than (greater than) R1. 
 
 

The application of the aforementioned equation is as follows: In machine implementation, 

shifting the partial residual to the left in regard to a fixed divisor is more feasible. 

 

R₁+1=2R₁-q₁V 
 
 

In Figure 6.1, the revised calculation is shown. The final partial residual R is now equal to 
 

23R4 after the overall remainder R has been relocated three bits to the left. The hardest 

part of the division is locating the quotient digit, q. If radix-r numbers are being 

represented, one of the r possible values for q must be chosen. With r = 2, comparing V 
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and 2R in the ith step might result in q. Q = 0 if V > 2R; else, Q = 1. A combinational 

magnitude comparator circuit may not be practical if V is too long. In such a case, q is 

often determined by deducting V from 2R and examining the sign of 2R, - V. If 2R is 

negative, then Q1 equals 0; if positive, then Q1 equals 1. 

 

 
 
 

Fig no.6.1 the division modified for machine implementation 
 
 

The division circuitry is depicted in Figure 6.2. two-bit n-bit shift register The remaining 

components are kept in A.Q. The whole payout, which might include up to 2n bits, is first 

retained in A.Q. The divisor V is kept in the M register during division. A.Q is shifted to 

the left on each step. The holes at the correct side of the Q register may be used to store 

the quotient's bits after they have been created. After division is finished, Q holds the 

quotient, and A has the shift remainder. 
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Through the use of a trial subtract of the type 2R, - V, it is possible to identify the quotient 

bit q. 

 

When 2R,-V is positive, as it is when q=The method of calculating q, and R1 may be 

integrated, this subtraction also yields the new partial residual R1+1. On the basis of how 

they combine the computations for q and R, two primary division algorithms may be 

separated from one another. Perhaps the answer is 4, 0, in which case the trial subtraction 

gives the value 2R, - V, but the necessary new partial remainder is 2R. By adding V back 

to the trial subtraction result, one may get the partial residual R-1. This simple method is 

known as restoring division. Using the formula R1+1=2R1-V, each step is calculated. If 

the outcome of the subtraction is negative, a restoring addition is made using R1 = R1 + 

V. 

 

This method necessitates n subtractions and a mean of n/2 additions if the probability of 

q. 1 is 1/2. Fixed-point subtract with exponents and fixed-point division with the integer 

part are both necessary for floating-point division. 

 

Fig 6.2 the data path of a sequential n-bit binary divider 
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Depending on whether the result is too big or too little, a floating-point operation results 

in overflow or underflow. By moving the mantissa of the result and changing its exponents, 

overflow or underflow caused by mantissa operations may often be rectified when 

employing floating point processing. One or more guard bits are temporarily connected to 

the right end of the mantissa in order to ensure correctness while doing floating-point nt 

calculations. X1 Xo, Xn-1, Xn-2, and Xn-3. Sometimes results must be rounded rather 

than reduced to n bits, for example, a guard bit x. Rounding is done by adding 1 to x0 and 

truncating the result to n bits. The bits that were relocated from the right end may be kept 

as guard  bits when a mantissaright-shifted  during  the alignment  step of addition or 

subtraction. 
 
 

6.3 .Dividers design USA ing combinational array 

Using circuits with combinational arrays, division may be done. Fig. 6.3 depicts a cell D 

that might be used to produce a restored division technique (a). This cell is a full subtracter, 

with t and u acting as the borrow-in and borrow-out bits, respectively. The main output z 

is controlled by input a. When a=1, the difference bit, designated by the mathematical 

equation as z, is 1. 

 

Since z = x minus y minus t, z equals x because a = 0m. Hence, the behavior of cell D is 

determined by the logic equations. 

 

Z = x + a (y @ t), xy + xt, and yt 
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Fig no 6.3 a cell D for array implementation of restoring division 
 
 

An array of D cells for splitting 3-bit unsigned integers into 4-bit quotients is shown in 
 

Fig. 6.4. 
 
 

V is subtracted from the shifted partial residual in each row of the array. 
 
 

 
 
 

Fig no. 6.4 A divider array for 3-bit unsigned number using the cell D of figure 6.3 
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2R, which was produced by the row before. The sign of the result and, therefore, of the 

quotient bit.out signal is determined by the borrow-word from the row's leftmost cell. 

Figure 6.4 displays a 3-bit unsigned number divider array utilizing cell D from figure 6.3. 

 

This signal, u, is connected to the control inputs of every cell in a row. If u, = 0, the row 

outputs 2R, V and q, u, 1 respectively. If u, 1, the row's output is reset to 2R, and q, u is 

once again equal to 0, the result is true. As a consequence, the output of each row initially 

begins as 2R, -V and is then transformed back to 2R as needed. Restoration is carried out 

via overriding the row's subtraction rather than explicitly inserting the divisor back. 

 

Let d and d' stand for a cell's carry (borrow) propagation and restore times, respectively. 
 
 

Assume that the dividend and divisor are both n bits long. As each row of the divider array 

functions as an n-bit ripple borrow subtractor, the calculation of one quotient bit takes the 

longest, nd + d'. As a result, the calculation time for an m-bit quotient and its associated 

remainder is m(nd+d'), and m(n+1)-1 cells are required. 
 
 

6.4 Division by repeated multiplication 

 
Repetition of multiplication may be used to divide effectively and cheaply in systems with 

a high-speed multiplier. A factor F is generated after each iteration, which is then 

multiplied by the dividend D and the divisor V. 

 

Hence, Q=D* Fo* F1* F2 * 
 
 

. V* Fo* F1* F2*. 
 
 

In order for the sequence 
 
 

V * Fo* F1* F2* D* Fo* F1* F2* to converge toward the required quotient, the factor F 
 

is selected. 
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The choice of the Fi's affects the method's ability to converge. For the sake of simplicity, 

consider the case where D and V are positive normalized fractions, resulting in V = 1- x, 

where x 1. Decide Fo= 1 + x. We quickly come together as one. As a result, we may write 

 

V* Fo=(1-x) (1 + x) = 1 - x2 
 
 

Now V Fois is more like one than like V. Set F1 next to 1 plus x2 Hence 
 
 

V* Fo* F1 is equal to (1-x2)(1+x2) = 1 
 
 

and so on. Let V1 stand for V* Fo* F1 F2.....Fi. 
 
 

At each level, the multiplication factor is calculated as F1 = 2 - Vi-1, which is just V1- 

two-s 1's complement. V1 soon approaches unity as I rises. The operation is complete 

when V1 equals the closest integer to one for the chosen word size, which is between 0.11 

and 111. 
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Conclusion 
 
 

An improved throughput was achieved by utilizing the pipelining techniques in order to 

increase the processors’ performance by overlapping the multiple instruction execution. 

The instructions were broken down into the stages whereas each stage was executed in a 

separate unit within the processor. This allowed several instructions to be executed in 

parallel, which increased the overall performance of the processor. 

 
It  was observed  that  by introducing  the pipelining  into  the super  scalar  processors, 

numerous instructions can be issued and executed in parallel. Similarly, in DSP processor, 

the overall performance was increased by allowing the processor to run multiple 

instructions at the same time. However, in DSP processors, the payload is huge and many 

instructions are inter-dependent, and have to be executed in a pre-defined order. This 

requires complex algorithmic setup in order to achieve parallelism and performance at the 

same time. This will be covered in future work. 

 
Overall, pipelining increases performance in both super scalar and DSP processors with a 

minimum catch due to inter-dependency of instructions, which can also be reduces by 

writing specialized and complex DSP algorithms by dividing the instructions in smaller 

units and pre-fetching the independent units and executing them in advance and then 

conclude the results in sequence. Thus, improving the overall throughput of the processor. 
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APPENDICES 
 
 

Appendix A 
 

 
Verilog Code for Bit Serial Adder 

 
 

/////design for one bit full adder 

module fulladd(sum, c_out,a,b,c_in); 

input a,b,c_in; 

output sum,c_out; 

wire p,g,c; 

xor(p,a,b); 

and(g,a,b); 

xor(sum,p,c_in); 

and(c,p,c_in); 

or(c_out,c,g); 

endmodule 

///design of d-flipflop/// 
 
 

module dff(q,d,clk); 
 
 

output q; 
 
 

input d,clk; 
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reg q; 
 
 

always (posedge clk) 
 
 

q<=d; 
 
 

endmodule 
 
 

///design of serial in parallel out shift register/// 
 
 

module serial_to_parallel(q0,q1,q2,q3,shift,d,clk); 
 
 

output q0,q1,q2,q4; 
 
 

input d; 
 
 

input clk,shift; 
 
 

wire a; 
 
 

assign a = shift; 
 
 

//instantiate d-flipflops 

dff dff0(q0,d,clk); 

dff dff1(q1,q0,clk); 

dff dff2(q2,q1,clk); 

dff dff3(q3,q2,clk); 

endmodule 
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////design of parallel in serial out shift register/// 
 
 

module parallel_in_serial_out(q3,shift_load,d0,d1,d2,d3,clk); 
 
 

output q3; 
 
 

Input d0,d1,d2,d3,clk,shift_load; 
 
 

wire a,a_inv; 
 
 

wire x,y,z,q2,q1,q0; 

assign a=shift_load, 

a_inv=˷ (shift_load), 

x=(q0 & a) | (d1 & a_inv), 

y=(q1 & a) | (d2 & a_inv), 

z=(q2 & a) |(d3 & a_inv); 

dff dff1(q0,d0,clk); 

dff dff1(q1,x,clk); 

dff dff2(q1,x,clk); 

dff dff3(q2,y,clk); 

dff dff4(q3,z,clk); 

endmodule 
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///stimulus for bit serial adder/// 
 
 

module stimulus; 
 
 

reg [3:0] A,B; 
 
 

reg clk,shift,shift_load; 
 
 

wire SUM, c_in; 

wire C_OUT,q0,q1; 

wire p0,p1,p2,p3; 

///instantiate serial in parallel out shift register/// 
 
 

serial_to_parallel s_to_p(p0,p1,p2,p3,shift,SUM,clk); 
 
 

///instantiate parallel in serial out shift register/// 
 
 

parallel_in_serial_out p_to_s0(q0,shift_load,A[0],A[1],A[2],A[3],clk); 
 
 

parallel_in_serial_out p_to_s1(q1,shift_load,B[0],B[1],B[2],B[3],clk); 
 
 

///instantiate one bit full adder/// 
 
 

fulladd FA(SUM,C_OUT,q0,q1,c_in); 
 
 

//instantiate d-flipflop for storing carry out// 
 
 

dff dff5(c_in,C_OUT,clk); 
 
 

///set up the monitoring for the signal values/// 
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initial 

begin 

$monitor($time,”A=%b,B=%b,C_IN=%b,…..C_OUT=%b,SUM=%b/n”,q0, 
 
 

q1,C_OUT,SUM); 
 
 

end 
 
 

//stimulate inputs 

initial 

begin clk=1’b0; 

A=4’b0011;B=4’b0111; 

shift<=1; 

shift_load=0 
 
 

#2 shift_load=1; 

End 

always #1 clk=˷clk; 
 
 

initial 

begin 

$vw_dumpvars; 
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#30 $stop; 

end 

endmodule 
 
 

Verilog Code for Ripple Carry Adder 
 
 

///design for fulladder/// 

module fulladd(sum,c_out,a,b,c_in); 

output sum,c_out; 

input a,b,c_in; 

wire s1,c1,c2; 

xor(s1,a,b); 

and(c1,a,b); 

xor(sum,s1,c_in); 

and(c2,s1,c_in); 

or(c_out,c2,c1); 

endmodule 

///design for Ripple Carry Adder/// 
 
 

module ripple_carry_adder(sum,c_out,x,y,c_in); 
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input [3:0] x,y; 
 
 

input c_in; 
 
 

output [3:0]sum; 

output c_out; 

wire c1,c2,c3,c4; 

//instantiate full adders 
 
 

fulladd FA1(sum[0],c1,x[0],y[0],c_in); 

fulladd FA2(sum[1],c2,x[1],y[1],c1); 

fulladd FA3(sum[2],c3,x[2],y[2],c2); 

fulladd FA4(sum[3],c4,x[3],y[3],c3); 

assign c_out=c4; 

endmodule 
 
 

///stimulus for Ripple Carry Adder/// 
 
 

module stimulus; 
 
 

reg [3:0] x,y; 
 
 

reg c_in; 
 
 

wire c_out; 
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wire [3:0]sum; 
 
 

//instantiate the design of ripple carry adder 

ripple_carry_adder R_C_A(sum,c_out,x,y,c_in); 

initial 

begin 
 
 

$monitor(“\t\t  %b<-C_IN\n  A     %b\n  B        %b\n\t…………\nC_OUT- 
 
 

>%b%b<-SUM\n”,c_in,x,y,c_out,sum); 
 
 

end 
 
 

//stimulate inputs 

initial 

begin 
 
 

x=4’b1001;4’b1101;c_in=0; 
 
 

#5 x=4’b1110;y=4’0110;c_in=0; 
 
 

end 

endmodule 

Verilog Code for Pipelined Ripple Carry Adder 
 
 

///1-bit full adder/// 
 
 

MODULE FULLADD (SUM,C_OUT,A,B,C_IN); 
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//I/O port declaration 

outpur sum,c_out; 

input a,b,c_in; 

//internal nets 

Wire s,c1,c2; 

Xor(s,a,b); 

and(c1,a,b); 

xor(sum,s,c_in); 

and(c2,s,c_in); 

or(c_out,c2,c1); 

endmodule 

////D – Flip Flop//// 
 
 

//define d-flipflop 

module dff(q,d,clk); 

output q; 

input d,clk; 
 
 

reg q; 
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always @(posedge clk) 
 
 

q<=d; 
 
 

endmodule 
 
 

////serial in serial out shift register for storing numbers/// 
 
 

//shift register for storing number A0 

module serial_in_serial_out_1(p0,a0,clk); 

input a0,clk; 

output p0; 
 
 

dff dff A_0(p0,a0,clk); 
 
 

endmodule 
 
 

//shift register for storing number B0 

module seria_in_serial_out_2(q0,b0,clk); 

input b0,clk; 

output q0; 
 
 

dff dffB_0(q0,b0,clk); 
 
 

endmodule 
 
 

//shift register for storing number A1 
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module serial_in_serial_out_3(p1,a1,clk); 
 
 

input a1,clk; 

output p1; 

wire A1; 

dff dffA1_0(A1,a1,clk); 

dff dffA1_1(p1,A1,clk); 

endmodule 

//shift register for storing number B1 

module serial_in_serial_out_4(q1,b1,clk); 

input b1,clk; 

output q1; 
 
 

wire B1; 
 
 

dff dff1_B0(B1,b1,clk); 

dff dff1_B1(q1,B1,clk); 

endmodule 

//shift register for storing number A2 

module serial_in_serial_out_5(p2,a2,clk); 
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input a2,clk; 

output p2; 

wire A2,A_2; 

dff dff2_A0(A2,a2,clk); 

dff dff2_A1(A_2,A2,clk); 

dff dff2_A2(p2,A_2,clk); 

endmodule 

//shift register for storing number B2 

module serial_in_serial_out_6(q2,b2,clk); 

input b2,clk; 

output q2; 
 
 

wire B2,B_2; 
 
 

dff dff2_B0(B2,b2,clk); 

dff dff2_B1(B_2,B2,clk); 

dff dff2_B2(q2,B_2,clk); 

endmodule 

//shift register for storing number A3 
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module serial_in_serial_out_7(p3,a3,clk); 
 
 

input a3,clk; 
 
 

output p3; 
 
 

wire A3,A_3,a_3; 
 
 

dff dff3_A0(A3,a3,clk); 

dff dff3_A1(A_3,A3,clk); 

dff dff3_A2(a_3,A_3,clk); 

dff dff3_A3(A3,a_3,clk); 

endmodule 

//shift register for storing number B3 

module serial_in_serial_out_8(q3,b3,clk); 

input b3,clk; 

output q3; 
 
 

wire B3,B_3,b_3; 
 
 

dff dff3_B0(B3,b3,clk); 

dff dff3_B1(B_3,B3,clk); 

dff dff3_B2(b_3,B_3,clk); 
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dff dff3_B3(B3,b_3,clk); 
 
 

endmodule 
 
 

//shift register for storing sum// 
 
 

//shift register for storing sum S0// 

module serial_to_serial_0(SUM[0],s0,clk); 

input s0,clk; 

output SUM[0]; 
 
 

wire A,B,C; 
 
 

dff dff_s0_0(A,s0,clk); 

dff dff_s0_1(B,A,clk); 

dff dff_s0_2(C,B,clk); 

dff dff_s0_3(SUM[0],C,clk); 
 
 

endmodule 
 
 

//shift register for storing sum S1// 

module serial_to serial_1(SUM[1],S1,clk); 

input s1,clk; 

output SUM[1]; 
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wire D,E; 
 
 

dff dff_s1_0(D,s1,clk); 
 
 

dff dff_s1_1(E,D,clk); 
 
 

dff dff_s1_2(SUM[1],E,clk); 
 
 

endmodule 
 
 

//shift register for storing sum S2// 

module serial_to_serial_2(SUM[2],s2,clk); 

input s2,clk; 

output SUM[2]; 
 
 

wire F; 
 
 

dff dff_s2_0(F,s2,clk); 
 
 

dff dff_s2_1(SUM[2],F,clk); 
 
 

endmodule 
 
 

//shift register for storing sum S3// 

module serial_to_serial_3(SUM[3],s3,clk); 

input s3,clk; 

output SUM[3]; 



85 

 

Evaluating the Impact of Designing and Testing of High Performance Pipeline Functional Units by Using Verilog 
Hardware Description Language about Superscalar and DSP Processors and their Usage in Complex DSP 
Algorithms 

 

dff dff_s3_0(SUM[3].s3.clk); 
 
 

endmodule 
 
 

//stimulus for pipelined adder// 
 
 

module stimulus; 
 
 

reg [3:0],A,B; 

reg clk,C_IN; 

wire [3:0] SUM; 

wire p0,q0,p1,q1,p2,q2,p3,q3; 
 
 

//instantiate four 1-bit full adders and registers for carry out from one full 

adder to carry in for next full adder 

 

fulladd FA0(SUM[0],C_OUT0,A0,B0,C_IN); 
 
 

dff R0(c_in1,C_OUT0,clk); 
 
 

fulladd FA1(SUM[1],C_OUT1,B1,c_in1); 
 
 

dff R1(c_in2,C_OUT1,clk); 
 
 

fulladd FA2(SUM[2].C_OUT2,A2,B2,c_in2); 
 
 

dff R2(c_in,C_OUT2,clk); 
 
 

fulladd FA3(SUM[3],C_OUT,A3,B3,c_in3); 
 
 

//instantiate the shift registers for numbers A and B 
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serial_in_serial_out_1S_to_S1(p0,A[0],clk); 

serial_in_serial_out_2S_to_S2(q0,B[0],clk); 

serial_in_serial_out_3S_to_S3(p1,A[1],clk); 

serial_in_serial_out_4S_to_S4(q1,B[1],clk); 

serial_in_serial_out_5S_to_S5(p2,A[2],clk); 

serial_in_serial_out_6S_to_S6(q2,B[2],clk); 

serial_in_serial_out_7S_to_S7(p3,A[3],clk); 

serial_in_serial_out_8S_to_S8(q3,A[3],clk); 

//instantiate the shift registers for storing sums 

serial_to_serial_0s_to_s0(SUM[0],s0,clk); 

serial_to_serial_1s_to_s1(SUM[1],s1,clk); 

serial_to_serial_2s_to_s2(SUM[2],s2,clk); 

serial_to_serial_3s_to_s3(SUM[3],s3,clk); 

//set up the monitoring for the signal values 

initial 

begin 
 
 

$monitor(“\t\t %b<-C_IN\nA %b\nB   %b\n\t ……….\nC_OUT->%b%b<- 
 
 

SUM”,C_IN,A,B,C_OUT,SUM); 
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End 
 
 

//stimulate inputs 

initial 

begin 
 
 

A=4’d0;B=4’d3;C_IN=0; 
 
 

#5 A=4’d7;B=4’d5; 
 
 

#5 A=4’d9;B=4’d10; 
 
 

#5 A=4’d6;B=4’d4; 
 
 

end 

initial 

begin 

$vw_dumpvars; 
 
 

#240 $stop; 

end 

endmodule 

Verilog Code for Carry Look Ahead Adder 
 
 

//fulladder 
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module fulladd4_1(sum,c_out,a,b,c_in); 
 
 

//inputs and outputs 

output [15:0] sum; 

output c_out; 

input [15:0] a,b; 
 
 

input c_in; 
 
 

//internal wires 
 
 

wire p0,g0,p1,g1,p2,g2,p3,g3; 
 
 

wire c4,c3,c2,c1; 
 
 

//compute p for each stage 

assign p0=a[0]^b[0], 

p1=a[1]^b[1], 

p2=a[2]^b[2], 

p3=a[3]^b[3]; 

//compute the g for each stage 

assign g0=a[0]&b[0], 

g1=a[1]&b[1], 
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g2=a[2]&b[2], 

g3=a[3]&b[3]; 

//compute the carry for each stage assign 

c1=(g0|p0&c_in), c2=(g1|p1&g0)|(p1&p0&c_in), 

c3=(g2|(p2&g1)|(p2&p1&g0)|(p2&p1&p0&c_in)), 

c4=(g3|p3&g2)|(p3&p2&g1)|(p3&p2&p1&g0)|(p3&p2&p1&p0&c_in); 
 
 

//compute sum 
 
 

assign sum[0]=(p0^c_in), 

sum[1]=(p1^c1), 

sum[2]=(p2^c2), 

sum[3]=(p3^c3); 

//assign carry output 

assign c_out=c4; 

endmodule 

module stimulus; 
 
 

//set up varialbles 
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reg [15:0] a,b; 
 
 

reg c_in; 
 
 

wire [15:0] sum; 
 
 

wire c_out; 
 
 

//instantiate the 4-bit full adder 
 
 

fulladd4_1 fa1_4(sum[3:0],c1,a[3:0],b[3:0],c_in); 

fulladd4_1 fa2_4(sum[7:4],c2,a[7:4],b[7:4],c1); 

fulladd4_1 fa3_4(sum[11:8],c3,a[11:8],b[11:8],c2); 

fulladd4_1 fa4_4(sum[15:12],c_out,a[15:12],b[15:12].c3); 
 
 

//setup the monitoring for the signal values 

initial 

begin 
 
 

$monitor(“\t\t\t\t\t      %b<-C_IN\n A      %b\nB      %b\n\t\t……\nC_OUT- 
 
 

>%b%b<-SUM\n”,c_in,a,b,c_out,sum); 
 
 

End 
 
 

//stimulate inputs 

initial 

begin 
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a=16’d1279;b=16’d1515;c_in=0; 
 
 

#5 a=16’d4376;b=16’d2345;c_in=0; 
 
 

#5 a=16’d7834;b=16’d4792;c_in=1; 
 
 

end 

endmodule 

Verilog Code for Carry Save Adder 

module Half_adder(sum,c_out,x,y); 

input x,y; 
 
 

output sum,c_out; 

xor(sum,x,y); 

and(c_out,x,y); 

endmodule 

////design for one bit full adder//// 
 
 

module Full_Adder(sum,c_out,a,b,c_in); 
 
 

input a,b,c_in; 

output sum,c_out; 

wire p,g,c; 
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xor(p,a,b); 

and(g,a,b); 

xor(sum,p,c_in); 

and(c,p,c_in); 

or(c_out,c,g); 

endmodule 

////design for carry save adder//// 
 
 

module Carry_Save(sum,c_out,w,x,y,z); 
 
 

input [3:0]w,x,y,z; 

outpur [5:0] sum; 

output c_out; 

wire s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13; 
 
 

wire c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13; 
 
 

//instantiate the full adders for adding w,x,y and z as first stage 
 
 

Full_Adder FA0(s0,c0,w[0],x[0],y[0]); 

Full_Adder FA1(s1,c1,w[1],x[1],y[1]); 

Full_Adder FA2(s2,c2,w[2],x[2],y[2]); 
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Full_Adder FA3(s3,c3,w[3],x[3],y[3]); 
 
 

//instantiate the full adders for adding sum and carries for first stage and z 
 
 

Half_Adder HA0(s4,c4,s0,z[0]); 

Full_Adder FA4(s5,c5,s1,c0,z[1]); 

Full_Adder FA5(s6,c6,s2,c1,z[2]); 

Full_Adder FA6(s7,c7,s3,c2,z[3]); 

Half_Adder HA4(s8,c8,c3,c7); 

//instantiate the half adders for adding sum and carries from second stage 
 
 

Half_Adder HA1(s9,c9,s5,c4); 

Full_Adder FA8(s10,c10,s6,c5,c9); 

Full_Adder FA9(s11,c11,s7,c6,c10); 

Full_Adder FA10(s12,c12,s8,c7,c11); 

Half_Adder HA2(s13,c13,c8,c12); 

assign sum=(s13,s12,s11,s10,s9,s4); 

c_out=c13; 

endmodule 
 
 

////stimulus for carry save adder//// 
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module stimulus; 

reg [3:0]w,x,y,z; 

wire [5:0] sum; 

wire c_out; 

//instantiate the design of carry save adder 

Carry_Save C_S_A(sum,c_out,w,x,y,z); 

initial 

begin 
 
 

$monitor(“\t\tw      %b\n\t\tx      %b\n\t\ty      %b\n\t\tz      %b\n\t….\nc_out 
 
 

%b%bsum”,w,x,y,z,c_out,sum); 
 
 

end 
 
 

//stimulate inputs 

initial 

begin 
 
 

w=4’b1001;x=4’b0011;y=4’b0101;z-4’b1101; 
 
 

end 

endmodule 
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Appendix B 
 
 

////design for fulladder//// 
 
 

module fulladd(sum,c_out,a,b,c_in); 
 
 

output sum,c_out; 

input a,b,c_in; 

wire s1,c1,c2; 

xor(s1,a,b); 

and(c2,s1,c_in); 

or(c_out,c2,c1); 

endmodule 

////design for two’s complement subtractor//// 
 
 

module subtractor(z,c_out,x,y,c_in); 
 
 

input [3:0] x,y; 

input c_in; 

output [3:0]z; 

output c_out; 

wire s,c0,c1,c2; 

wire a0,a1,a2,a3; 



 

Evaluating the Impact of Designing and Testing of High Performance Pipeline Functional Units by Using 
Verilog Hardware Description Language about Superscalar and DSP Processors and their Usage in 

Complex DSP Algorithms 

96 

wire b0,b1,b2,b3; 
 
 

wire cout1,cout2,cout3,cout4; 
 
 

assign b0=1; 
 
 

b1=0; 

b2=0; 

b3=0; 

assign s=1; 

xor(a0,x[0],s); 

xor(a1,x[1],s); 

xor(a2,x[2],s); 

xor(a3,x[3],s); 

//instantiate the full adders for adding 1 in 1’s complement of Y 
 
 

fulladd FA1(z[0],c0,a0,y[0],c_in); 

fulladd FA2(z[1],c1,a1,y[1],c0); 

fulladd FA3(z[2],c2,a2,y[2],c1); 

fulladd FA4(z[3],c_out,a3,y[3],c2); 

endmodule 
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////stimulus for two’s complement subtractor//// 
 
 

Module stimulus; 
 
 

reg [3:0]x,y; 

reg c_in; 

wire [3:0]z; 

wire c_out; 

//instantiate the design for two’s complement subtractor 
 
 

subtractor T_C_S(z,c_out,x,y,c_in); 
 
 

initial 
 
 

$monitor(“\t\t\tX           %b\n\t\t\t     Y                 %b\n\t\t\t…………\n\t\t\tZ 
 
 

%b%b”,x,y,c_out,z); 
 
 

End 
 
 

//stimulate input 

initial 

begin 

x=4’b1110;y=4’b0110;c_in=1; 

end 

endmodule 
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Glossary 
 
 

Some of the terms in this glossary are from the ANSI American National 
 
 

Dictionary for Information systems (1990) 
 
 

A 
 
 

Accumulator: The name of the CPU register in a single-address instruction 

format. The accumulator, or AC, is simplicity one of the operands for the 

instruction. 

Addend: In addition, the number that is added to another number called the 

addend. 

 

Adder: A logic circuit used to add two binary numbers. 
 
 

Arithmetic and Logic Unit (ALU): Arithmetic Logic Unit; the key- 

processing element of the microprocessor that performs arithmetic and logic 

operations. 

 

Analog: Being continuous or having continuous values, as opposed to having 

a set of discrete values. 

 

AND: A basic logic operation in which a true (HIGH) output occurs only if 

all the input conditions are true (HIGH). 

 

AND gate: A logic gate that produces a HIGH output only when all of the 

inputs are HIGH. 
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Architecture: The internal functional arrangement of the elements that give 

a device; its particular operating characteristics. 

 

Array: In a PLD, a matrix formed by rows of product-term lines and columns 

of input lines with a programmable cell at each junction. 

 

Augend: In addition, the number to which the addend is added. 
 
 

B 
 
 

Base: In the numeration system commonly used in scientific papers, the 

numbers that  is  raised to  the  power denoted by the  exponent and then 

multiplied by the mantissa to determine the real number represented. 

 

Binary: Having two values or states; describes a number system that has a 

bae of two and utilizes 1 and 0 as its digits. 

 

Bit: A binary digit, which can be either 1 or 0. 
 
 

Branch prediction: A mechanism used by the processor to predict the 

outcome of a program branch prior to its execution. 

 

Buffer: Storage used to compensate for a difference in rate of flow of data, 

or time of occurrence of events, when transferring data from one device to 

another. 

 

Bus: A shared communication path consisting of one or a collection of lines. 

In some computer systems, a common bus connects CPU, memory and I/O 
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components. Since the lines are shared by all components, only one 

component at a time can successfully transmit. 

 

Byte: A group of eight bits. Also referred to as an octet. 
 
 

Cache Memory: A special buffer storage smaller and faster than main 

storage that is used to hold a copy of instructions and data in main storage 

that are likely to be needed next by the processor, and that have been obtained 

automatically from main storage. 

 

Carry: The digit generated when the sum of two binary digits exceeds 1. 
 
 

Carry generation: The process of producing an output carry in a full adder 

when both input bits are 1s. 

 

Carry Propagation: The process of rippling an input carry to become the 

output carry in a full adder when wither or both of the input bits are 1s and 

the input carry is a 1. 

 

Cascade: To connect “end-to-end” as when several counters are connected 

from the terminal count output of one counter to the enable input of the next 

counter. 

 

Central Processing Unit (CPU): That portion of a computer that fetches and 

executes instructions, it consists of an arithmetic and logic unit (ALU), a 

controller unit and registers. Often simply referred to as a processor. 
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Circuit: An arrangement of electrical and/or electronic components 

interconnected in such a way as to perform a specified function. 

 

Clear: An asynchronous input used to reset a flip-flop (make the Q output 0); 
 
 

to place a register or counter in the state in which it contains all 0s. 
 
 

Clock: The basic timing signals in digital systems. 
 
 

Code: A set of bits arranged in a unique pattern and used to represent such 

information as numbers, letters and other symbols. 

 

Combinational Logic:  A  combination of  logic  gates  interconnected to 

produce a specified Boolean function with no storage or memory capability 

some times called combinational logic. 

 

Complement: The inverse or opposite of a number, in Boolean algebra, the 

inverse function, expressed with a bar over the variable. The complement of 

a 1 is a 0 and vice versa. 

 

Conditional Jump: A jump that takes place only when the instruction that 

specifies it is executed and specified are satisfied. 

 

Control Unit: That part of CPU that controls CPU operations, including ALU 

operations, the movement of data within the CPU, and the exchange of data 

and control signals across external interfaces (e.g., the system bus) 
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D 
 
Data  Bus:  A  bi-directional set  of  conductive  paths  on  which  data  or 

instruction codes are transferred into the microprocessor or on which the 

result of an operation or computation is sent out from the microprocessor. 

 

D flip-flop: A type of bi-stable multivibrator in which the output assumes the 

state of the D input line to several output lines in a specified time sequence. 

 

Difference: The result of a subtraction. 
 
 

Digit: A symbol used to express a quantity. 
 
 

Digital: Related to digits or discrete quantities; having a set of discrete values 

as opposed to continuous values. 

 

Direct Memory Access: A form of I/O in which a special module, called a 

DMA module, controls the exchange of data between main memory and an 

I/O module. The CPU sends request for the transfer of a block of data to the 

DMA module and is interrupted only after the entire block has been 

transferred. 

 

Dividend: In a division operation, the quantity that is being divided. 
 
 

Divisor: In a division, a quantity that divides. 
 
 

DMA: Direct Memory Access: a method to directly interface a peripheral 

device to memory without using the CPU for control. 
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DRAM: Dynamic Random Access Memory; a type of semiconductor 

memory that uses capacitors as the storage element and is a volatile, 

read/write memory. 

 

E 
 
 

Exclusive OR (XOR): A basic logic operation in which a HIGH occurs when 

the two inputs are at opposite levels. 

 

Executive: A CPU process in which an instruction is carried out. 
 
 

Exponent: A part of floating point number that represent the number of 

places that the decimal point (or binary point) is to be moved. 

 

Feed Back: The output voltage or a portion of it that is connecting back to 

the input of a circuit. 

 

Fetch:  A  CPU  processes in  which an  instruction is  obtained  from the 

memory. 

 

FIFO: First in First Out memory. 
 
 

Flip-Flop: A  basic  storage  circuit that  can  store  only bit  at  a  time;  a 

synchronous bistable device. 

 

Floating-point number: A number representation based on scientific 

notation in which the number consists of an exponent and mantissa. 
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Full Adder: A digital circuit that adds two bits and an input carry to produce 

a sum and an output carry. 

 

Gate: A logic circuit that performs a specified logic operation, such as AND 
 
 

or OR; one of the three terminals of a field affect transistor. 
 
 

Half Adder: A digital circuit that adds two bits and produces a sum and an 

output carry. It cannot handle input carries. 

 

Hardware: The circuits and physical components of a computer system (as 

composed to the direction called software). 

 

Instruction: One step in a computer program; a unit information that tells the 
 
 

CPU what to do. 
 
 

Integer: A whole number. 
 
 

Interrupt: A signal or instruction that causes the current processes to be 

temporarily stopped while a service outline is run. 

 

L 
 
 

Logic: In digital electronic, the decision-making capability of gate circuit, in 

which a HIGH represent a true statement a LOW represents a false one. 

 

Look Ahead Carry: A method of a binary addition whereby carries from 

proceeding adder stages are anticipated, the elimination carry propagation 

delays. 
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LSI: Large Scale Integration; a level of IC complexity in which there are 100 

to 9999 equivalent gates per chip. 

 

Magnitude: The size or value of a quantity. 
 
 

Mantissa: The magnitude of a floating-point number. 
 
 

Micro Processor: A digital integrated circuit device that can be programmed 

with a series of instruction to perform the specified data. 

 

Minuend: The number from which another number is subtracted. 
 
 

Multiplexer (MUX): A circuit (digital device) that switches digital data from 

several input lines onto a single output line in a specified time sequence. 

 

Multiplicand: The number that multiplies the multiplicand. 
 
 

Operands: A variable, register, a memory location, or a value used in an 

assembly language program as part of the instruction. 

 

Output: A signal or line coming out of a circuit. 
 
 

Parallel: A digital system, data occurring simultaneously on several lines, a 

transfer or processing of several bytes simultaneously. 

 

Pipeline: As applied to memories, an implementation that allows a read or 

writes operation to be initiated before the previous operation is completed. 

 

Quotient: The result of division. 
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RAM:  Random  Access  Memory;  a  volatile  read/write  semiconductor 

memory. 

 

Remainder: The amount left over after a division. 
 
 

Ripple Carry: A method of binary addition in which the output carry from 

each adder becomes the input carry of the next higher-order adder. 

 

Shift: To shift binary data from stage within a shift register or other storage 

device or to move binary data into or out of the device. 

 

Subtractor: A logic circuit used to subtract two binary numbers. Sum: 

The result when two or more numbers are added together. 

Throughput: The average speed through which a progam is executed. 
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